TSeriaI component

Properties Methods Data Types Events
Copyright Registration Support Source Code
Description

The TSerial component provides a way of accessing PC serial ports from a Delphi application
without having to directly use the Windows API functions.

The TSerial component is a non-visual component like TTimer : it appears at design time as
an icon, but is invisible at run-time.

You need to add one TSerial component to a form for each serial port that you need to
access concurrently. If you need to access more than one port, but one at a time, you can
change ports just by altering the Port property.

A comms port is opened by setting the component's Active property to True, and closed by
setting the Active property to False. The Active property is not visible at design-time.

All the port configuration properties can be changed at run-time when a port is active : the
TSerial component opens, closes and re-initialises the port(s) as necessary.

TSerial Properties

Active MessageEndChar RxQueueSize
Baudrate MessageStartChar RxWaiting
CheckParity Name StopBits
Componentindex NotifyErrors Tag

DataBits Owner TxQueueSize
ErrorCode Parity TxWaiting
FlowMode Port

MessageAppendCount RxEventMode

TSerial Methods

ReadChar WriteChar ZapRxQueue
ReadString WriteString ZapTxQueue

TSerial Events

OnError OnRxData
OnMessage OnTxEmpty

TSerial Data Types

eDataBits eParity
eFlowControl eStopBits
eNotifyErr sPorts

eOpModes

Active Property

Applies to
TSerial component

Declaration
property Active: Boolean;

Description
Note : Run-time only.

The Active property is the main "on/off" control for the TSerial component. It can only be set
at run-time.

Typically, all the port properties such as Baudrate and Parity will be set before setting Active
to True, although these can also be changed "on the fly" at run time.

Note that if an error (hardware not available for instance) prevents the port being opened,
the Active property will not become True. Thus the success of opening the port can be
gauged by setting and then testing Active :

Seriall.Baudrate := 4800;
Seriall.Active := True;
If Seriall.Active Then

{ Port open OK actions }
Else

{ Port open failed actions }

Baudrate Property

Applies to
TSerial component

Declaration
property Baudrate: Word;

Description

The Baudrate property sets the port Baudrate. The Baudrate must be one of the following
values :

300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 38400, 57600

CheckParity Property

Applies to
TSerial component

Declaration
property CheckParity: Boolean;

Description
The CheckParity property determines whether parity errors are detected on reception. If

errors are detected, and CheckParity is set to True, then the erroneous characters are
replaced with a '?".

Componentindex Property

Applies to
TSerial component

Declaration
property Componentindex: Integer;

Description

Run-time and read only. The Componentindex property indicates the position of
the component in its owner's Components property list. The first component in
the list has a Componentindex value of 0, the second has a value of 1, and so
on.

DataBits Property

Applies to
TSerial component

Declaration
property DataBits: eDataBits;

Description
Sets the number of databits per character for transmission and reception.

Value Meaning

d7bit 7 data bits
d8bit 8 data bits

ErrorCode Property

Applies to
TSerial component

Declaration
property ErrorCode: Integer;

Description

Contains the last error code obtained from the serial port. The following values are
significant:

Value Meaning
IE_BADID The device identifier is invalid or unsupported.
IE_BAUDRATE The device's baud rate is unsupported.
IE_BYTESIZE The specified byte size is invalid.
IE_DEFAULT The default parameters are in error.
IE_HARDWARE The hardware is not available

(locked by another program).
IE_MEMORY Cannot allocate the queues.
IE_NOPEN The device is not open.

IE_OPEN The device is already open.

FlowMode Property

Applies to
TSerial component

Declaration
property FlowMode: eFlowControl;

Description

Selects the flow-control mode for the comms port. The following are valid flow modes:

Value Meaning
fcNone Use no flow control
fcRTS_CTS Use RTS/CTS flow control.

When CTS is inactive, data transmission is suppressed.
When data cannot be accepted, RTS is set inactive.

fcDTR_DSR Use DTR/DSR flow control
When DTR is inactive, data transmission is suppressed.
When data cannot be accepted, DSR is set inactive.

fcXON_XOF Use XON/XOF flow control.
For both sending and receiving, an XOF character signals that no
more data is to be sent until an XON character is received.

MessageStartChar Property

Applies to
TSerial component

Declaration
property MessageStartChar: Char;

Description

When operating in message mode (RxEventMode=rxMessage) this is the start character that
identifies the beginning of a message. It defaults to STX (ASCII 2).

MessageEndChar Property

Applies to
TSerial component

Declaration
property MessageEndChar: Char;

Description

When operating in message mode (RxEventMode=rxMessage) this is the end character that
identifies the end of a message. It defaults to ETX (ASCII 3).

MessageAppendCount Property

Applies to
TSerial component

Declaration
property MessageEndCount: Word;

Description

When operating in message mode (RxEventMode=rxMessage) this is the count of characters
to be received after the end character defined by MessageEndChar.
This allows message extensions such as checksums, that may occur after the message end

character, to be captured.

Name Property

Applies to
TSerial component

Declaration
property Name: TComponentName;

Description

The Name property contains the name of the component as referenced by other
components. By default, Delphi assigns sequential names based on the type of the
component, such as 'Buttonl’, 'Button2', and so on. You may change these to suit

your needs.

Note: Change component names only at design time.

NotifyErrors Property

Applies to
TSerial component

Declaration
property NotifyErrors: eNotifyErr;

Description
Selects the action to be taken in the event of a comms error occurring.

Value Meaning

neDialog Displays an application-modal dialog box containing a text
description of the error.

neEvent Calls the component's OnError event. The user can supply
suitable error-handling code as the event handler.

neNone Takes no special action. The user should check the component's
ErrorCode property regularly to check if any error has occurred.

Owner Property

Applies to
TSerial component

Declaration
property Owner: TComponent;

Description

Run-time and read only. The Owner property indicates which component owns the
component.

The form owns all components that are on it. In turn, the form is owned by the
application.

When one component is owned by another, the memory for the owned component
is freed when its owner's memory is freed. This means that when a form is
destroyed, all the components on the form are destroyed also. Finally, when the
memory for the application itself is freed, the memory for the form (and all its
owned components) is also freed.

Don't confuse ownership of a component with being the parent of a component. A
parent is a windowed control that contains a child window. The parent and the
owner of a windowed component can be different components.

Port Property

Applies to
TSerial component

Declaration
property Port: sPorts;

Description

Defines the comms port number which the component is currently accessing.
For example :

for COM1: use port :=1
for COM2: use port := 2

Note

The port number can be changed even when the component is active. The component will
automatically close and re-open the ports as necessary.

Parity Property

Applies to
TSerial component

Declaration
property Parity: eParity;

Description

Sets the parity bit operation of the port. Note that receive parity checking can be turned off
using the CheckParity property, independent of the parity being generated on transmit.

Value Meaning

paNone No parity.

paOdd Odd parity.

paEven Even parity.

paMark Parity is stuck at "mark" condition.

paSpace Parity is stuck at "space" condition.

RxEventMode Property

Applies to
TSerial component

Declaration
property RxEventMode: eOpModes;

Description

Selects the operation mode for processing received data.
Events are generated by the component in response to received data.

OnRxData events signify that a variable amount of data is waiting in the receive queue to be
picked up by the user.

OnMessage events signify that a user-defined message has been received in its entirety. The
message is passed as a parameter to the event handler.

The events are mutually exclusive : either OnRxData events or OnMessage events will occur
but not both.

Value Meaning

rxNormal Generate OnRxData events

rxMessage Generate OnMessage events

RxQueueSize Property

Applies to
TSerial component

Declaration
property RxQueueSize: Word;

Description

Defines the size of the receive queue. This is the maximum number of characters that can
be waiting for processing having been received from the port.

RxWaiting Property

Applies to
TSerial component

Declaration
property RxWaiting: Word;

Description

Returns the actual number of characters waiting to be processed in the receive queue.
Run-time only and read-only.

StopBits Property

Applies to
TSerial component

Declaration
property StopBits: eStopBits;

Description
Defines the number of stop bits sent with each character.

Value Meaning

stlbit One stop bit
st2bit Two stop bits

Tag Property

Applies to
TSerial component

Declaration
property Tag: Integer;

Description
The Tag property is available to store an integer value as part of a component.

While the Tag property has no meaning to Delphi, your application can use the
property to store a value for its special needs.

TxQueueSize Property

Applies to
TSerial component

Declaration
property TxQueueSize: Word;

Description

Defines the size of the transmit queue. This is the maximum number of characters that can
be waiting to be sent, having been received from the user application.

TxWaiting Property

Applies to
TSerial component

Declaration
property TxWaiting: Word;

Description

Returns the actual number of characters waiting to be transmitted.
Run-time only and read-only.

eDataBits Type

Declaration
type eDataBits = (d7bit, d8bit) ;

Description
Defines the available options for the TSerial DataBits property.

eFlowControl Type

Declaration
type eFlowControl = (fcNone, fcRTS_CTS, fcDTR_DSR, fcXON_XOF) ;

Description
Defines the available options for the TSerial FlowMode property.

eParity Type
Declaration
type eParity = (paNone, PaOdd, paEven, paMark, paSpace) ;

Description
Defines the available options for the TSerial Parity property.

eStopBits Type
Declaration
type eStopBits = (stlbit, st2bit) ;

Description
Defines the available options for the TSerial StopBits property.

eNotifyErr Type

Declaration
type eNotifyErr = (neDialog, neEvent, neNone) ;

Description
Defines the available options for the TSerial NotifyErrors property.

eOpModes Type

Declaration
type eOpModes = (rxNormal, rxMessage) ;

Description
Defines the available options for the TSerial RxEventMode property.

sPorts Type

Declaration
type sPorts = 1..9 ;

Description
Defines the subrange of allowed values for the TSerial Port property.

TMessageEvent Type
Declaration
type TMessageEvent = procedure (Sender : TObject ; RxMessage : String) of Object;

Description

Defines the type for the event-handler procedure for the OnMessage event.
The RxMessage parameter contains the received message.

OnError Event

Applies to
TSerial component

Declaration
property OnError : TNotifyEvent;

Description
The OnError event occurs when a serial-port error is detected, if the error-handling mode set
by the NotifyErrors property is set to neEvent.

When handling this event the user's code should examine the ErrorCode property to
determine the nature of the error.

OnRxData Event

Applies to
TSerial component

Declaration
property OnRxData : TNotifyEvent;

Description
The OnRxData event occurs when there is data in the receive queue to be handled, if the
received data handling mode set by the RxEventMode property is set to rxNormal.

NOTE : Windows does not guarantee to send a message for every character received,
especially at higher baud rates. Therefore, the best plan is to use the OnRxData handler to
process all the data that is currently in the receive queue, using successive calls to
ReadChar or ReadString until the queue is empty.

Example :

procedure TForm1l.SeriallRxData(Sender: TObject);
var
in_char : Char;
begin
while Seriall.ReadChar(in_char) > 0 do
{ process in_char }
end;

OnTxEmpty Event

Applies to
TSerial component

Declaration
property OnTxEmpty : TNotifyEvent;

Description

The OnTxEmpty event occurs when the transmit queue becomes empty. The user event
handler can use the event to add more data to the transmit queue using the WriteChar or
WriteString methods.

Note that a OnTxEmpty event occurs when the TSerial component first becomes active and
when the port number is changed.

OnMessage Event

Applies to
TSerial component

Declaration
property OnMessage : TMessageEvent;

Description
The OnMessage event occurs when a message is received, if the received data handling
mode set by the RxEventMode property is set to rxMessage.

Message handling works as follows :

A message starts with a character defined by the MessageStartChar property.

A message ends with a character defined by the MessageEndChar property.

The number of characters defined by the MessageAppendCount property will be included
after the end character.

The maximum length of a message is 255 bytes, since the message is stored as a String.

The RxMessage parameter of the user event handler is a String that contains the received
message.

Example :

A message consists of STX (ASCII 2), 10 data characters, ETX(ASCII 3) and a one-byte
checksum.

Set MessageStartChar := Chr(2)
MessageEndChar := Chr(3)
MessageAppendCount :=1
RxEventMode := rxMessage

The OnMessage event will occur when the entire message has been received.

ReadChar Method

Applies to
TSerial component

Declaration
function ReadChar (var c : Char) : Integer;

Description

Reads one character from the input queue, if available.
The character is returned via the c parameter.

The function returns the number of characters read, which will be either 0 or 1.

ReadString Method

Applies to
TSerial component

Declaration
function ReadString (var s : String) : Integer;

Description

Reads up to 255 characters from the input queue, as many as are available.
The character is returned via the s parameter.

The function returns the number of characters read, which will be between 0 and 255.

WriteChar Method

Applies to
TSerial component

Declaration
procedure WriteChar (c : Char);

Description

Writes the character parameter c to the output queue.

WriteString Method

Applies to
TSerial component

Declaration
procedure WriteString (s : String);

Description

Writes the string parameter s to the output queue.

ZapRxQueue Method

Applies to
TSerial component

Declaration
procedure ZapRxQueue;
Description

Deletes any data that is currently in the receive queue.

ZapTxQueue Method

Applies to
TSerial component

Declaration
procedure ZapTxQueue;
Description

Deletes any data that is currently in the transmit queue.

Copyright Notice

This product and documentation is Copyright © R J Crowther, 1995
Versions :

SERIAL 1.04 20/1/96
HELP FILE 1.04 20/1/96

Registration

Registration now brings you the source code for TSERIAL.
Contact the author at :

Mr R J Crowther
20, Howe Road
Haverhill
Suffolk

CB9 9NJ
England

Email :

Compuserve 100255,660

Internet 100255.660@compuserve.com
Compuserve :

The product will be placed on Compuserve's SWREG registration forum. This is by far the
easiest method of registration for Compuserve users. The registration code is 9364.

Registration costs £ 10 or $ 15

I much prefer UK currency for direct orders, as bank conversion costs are high.

Support

Contact the author, preferably by email :

Email : Compuserve 100255,660
Internet 100255.660@compuserve.com

I cannot guarantee a specific response to unregistered shareware customers. Registered
copies will obtain a quicker response !

